7 research outputs found

    In Search of the Structure of Human Olfactory Space

    Get PDF
    We analyze the responses of human observers to an ensemble of monomolecular odorants. Each odorant is characterized by a set of 146 perceptual descriptors obtained from a database of odor character profiles. Each odorant is therefore represented by a point in a highly multidimensional sensory space. In this work we study the arrangement of odorants in this perceptual space. We argue that odorants densely sample a two-dimensional curved surface embedded in the multidimensional sensory space. This surface can account for more than half of the variance of the perceptual data. We also show that only 12% of experimental variance cannot be explained by curved surfaces of substantially small dimensionality (<10). We suggest that these curved manifolds represent the relevant spaces sampled by the human olfactory system, thereby providing surrogates for olfactory sensory space. For the case of 2D approximation, we relate the two parameters on the curved surface to the physico-chemical parameters of odorant molecules. We show that one of the dimensions is related to eigenvalues of molecules’ connectivity matrix, while the other is correlated with measures of molecules’ polarity. We discuss the behavioral significance of these findings

    Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice

    No full text
    Acute stress transiently disrupts reward-seeking behaviour and repeated stress exposure produces lasting anhedonia-like behaviour in rodents. Here, the authors show that stress triggers GABAergic activity in the ventral tegmental area which blunts reward-seeking behaviour in mice

    WHotLAMP: A simple, inexpensive, and sensitive molecular test for the detection of SARS-CoV-2 in saliva.

    No full text
    Despite the development of effective vaccines against SARS-CoV-2, epidemiological control of the virus is still challenging due to slow vaccine rollouts, incomplete vaccine protection to current and emerging variants, and unwillingness to get vaccinated. Therefore, frequent testing of individuals to identify early SARS-CoV-2 infections, contact-tracing and isolation strategies remain crucial to mitigate viral spread. Here, we describe WHotLAMP, a rapid molecular test to detect SARS-CoV-2 in saliva. WHotLAMP is simple to use, highly sensitive (~4 viral particles per microliter of saliva) and specific, as well as inexpensive, making it ideal for frequent screening. Moreover, WHotLAMP does not require toxic chemicals or specialized equipment and thus can be performed in point-of-care settings, and may also be adapted for resource-limited environments or home use. While applied here to SARS-CoV-2, WHotLAMP can be modified to detect other pathogens, making it adaptable for other diagnostic assays, including for use in future outbreaks
    corecore